Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Solar-powered water electrolysis holds significant promise for the mass production of green hydrogen. However, the substantial water consumption associated with electrolysis not only increases the cost of green hydrogen but also raises critical concerns about accelerating water scarcity. Although seawater can serve as an infinite water supply for green hydrogen production, its complex composition poses substantial challenges to efficient and reliable electrolysis. Here, we demonstrate a high-efficiency solar-powered green hydrogen production from seawater. Our approach takes advantage of the full-spectrum utilization of solar energy. Photovoltaic electricity is used to drive the electrolysis, whereas the waste heat from solar cells is harnessed to produce clean water through seawater distillation. With natural sunlight and real seawater as the sole inputs, we experimentally demonstrate a 12.6% solar-to-hydrogen conversion efficiency and a 35.9 L m−2 h−1 production rate of green hydrogen under one-sun illumination, where additional 1.2 L m−2 h−1 clean water is obtained as a byproduct. By reducing reliance on clean water and electricity supplies, this work provides a fully sustainable strategy to access green hydrogen with favorable energy efficiency and technoeconomic feasibility.more » « less
-
Free, publicly-accessible full text available January 28, 2026
-
Elastocaloric polymers, whose performance typically relies on phase transformation between amorphous chains and crystalline domains, offer a promising alternative to traditional refrigeration technologies. While engineering polymer‐network architecture has shown the potential to boost elastocaloric performance, the role of topological defects remains unexplored despite their prevalence in real polymers. This study reports a defect‐engineering approach in end‐linked star polymers (ELSPs) that enables an adiabatic temperature change of up to 8.14 ± 1.76 °C at an ambient temperature above 65 °C, showing an enhancement of 39% compared to ELSPs with negligible defects. This defect‐regulated solid‐state cooling is attributed to two competing effects of dangling‐chain defects on strain‐induced crystallization (SIC) and temperature‐induced crystallization (TIC), synergistically regulating the adiabatic temperature change. Specifically, increasing dangling‐chain defects monotonically lowers ELSPs’ mechanical performance at high temperatures due to suppressed SIC, but nonmonotonically impacts the mechanical performance at low temperatures due to the competition between suppressed SIC and enhanced TIC.more » « lessFree, publicly-accessible full text available December 12, 2026
-
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers’ amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.more » « less
An official website of the United States government

Full Text Available